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On a maximum principle for minimal surfaces
and their integrable discrete counterparts
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Abstract

A novel maximum principle for both classical and discrete minimal surfaces is recorded. In the
discrete setting, the maximum principle is based on purely geometric notions of discrete Gaußian
and mean curvatures and parallel discrete surfaces. As an additional confirmation of the validity of
these notions, a discrete analogue of a classical theorem for linear Weingarten surfaces is obtained.
Connections with the ‘parallel surface method’ utilized in condensed matter physics are discussed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decade, the study of canonical discretizations of differential geometries which
preserve the integrability of their underlying nonlinear differential equations has been a sub-
ject of extensive research. To a large extent, this area of discrete differential geometry has
been initiated by the pioneering results on integrable discretizations of pseudospherical and
isothermic surfaces by Bobenko and Pinkall [2,3]. However, there exist strong connections
with earlier work on both ‘difference geometry’ by Sauer [15,16] and Wunderlich [18] and
the classical differential geometry of Bäcklund transformations and associated permutabil-
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ity theorems by Bianchi, Darboux, Demoulin, Ribaucour and others (see the monograph
Discrete Integrable Geometry and Physics [6] for introductory references).

In the context of a large class of integrable discrete surfaces (‘O surfaces’), definitions of
Gaußian and mean curvatures for canonical discrete analogues of surfaces parametrized in
terms of curvature coordinates have been proposed in [17]. In particular, it has been shown
that discrete surfaces of constant Gaußian or mean curvature are governed by integrable
difference equations and admit associated Bäcklund transformations [1,14]. Moreover, it has
been demonstrated that the class of discrete surfaces of vanishing mean curvature (discrete
minimal surfaces) coincides with the class of discrete isothermic minimal surfaces discussed
in [3]. The latter class has been defined in terms of a discrete Christoffel transform and admits
a discrete analogue of the classical Weierstrass representation of minimal surfaces [8].

In the present paper, we first set down a novel maximum principle which characterizes
classical minimal surfaces. This is achieved by regarding any given surface as being em-
bedded in a layer of parallel surfaces. As a by-product, we obtain a characterization of the
mean curvature of a surface which may immediately be generalized to the discrete case
if an appropriate notion of parallel discrete surfaces is introduced. It turns out that this
geometric definition of discrete mean curvature coincides with that justified algebraically
in [17]. Moreover, we set down a discrete analogue of a classical theorem of differential
geometry involving ‘linear Weingarten surfaces’ [8]. We then demonstrate that, remarkably,
the maximum principle for minimal surfaces holds mutatis mutandis in the discrete setting.
This highlights once again the canonicity of both the standard integrable discretization of
minimal surfaces and the definitions of the discrete Gaußian and mean curvatures. In the
last section, we establish connections with the ‘parallel surface method’ which has been
developed in the context of the determination of interfacial curvatures in condensed matter
systems [13].

2. A maximum principle for minimal surfaces

In the following, we are concerned with the differential geometry of surfaces in a three-
dimensional Euclidean ambient space. In particular, we focus on classical minimal surfaces.
Even though minimal surfaces are known to admit a variety of characteristic properties [7]
such as vanishing mean curvature or vanishing first variation of the area functional, we here
propose another characterization which turns out to be canonical in the discrete setting to be
considered in Section 3. In this connection, it proves convenient to parametrize the surfaces
in terms of curvature coordinates (x, y). Thus, if r denotes the position vector of a surface
� and N = (rx × ry)/|rx × ry| is the corresponding unit normal then the first and second
fundamental forms I = dr2 and II = −dr · dN become [8]:

I = H2 dx2 + K2 dy2, II = κ1H
2 dx2 + κ2K

2 dy2. (2.1)

Here, κ1 and κ2 designate the usual principal curvatures.
In order to establish a maximum principle for minimal surfaces, we regard a surface �

as being embedded in a layer of parallel surfaces �‖(c), where the parameter c denotes the
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distance to the surface �‖(0) = �, so that

r‖(c) = r + cN. (2.2)

By virtue of the formulae of Rodrigues [8]:

Nx = −κ1rx, Ny = −κ2ry, (2.3)

it is readily shown that the corresponding one-parameter family of metrics I‖(c) adopts the
form

I‖ = H‖2 dx2 + K‖2 dy2 (2.4)

with the metric coefficients H‖ and K‖ given by

H‖ = (1 − cκ1)H, K‖ = (1 − cκ2)K. (2.5)

Moreover, the second fundamental forms turn out to be likewise purely diagonal and hence
the coordinates x and y parametrize the lines of curvature on all members of the one-
parameter family of surfaces.

Since, for any surface �, the associated one-parameter family of parallel surfaces �‖
shares the normal congruence, the infinitesimal surface elements d�‖ of area dA‖ corre-
sponding to fixed parameters x and y generate an infinitesimal ‘tube’ bounded by normal
lines. It is therefore natural to define the dilation factor Q(c) as (cf. [9])

Q = dA‖

dA
=

√
det I‖√
det I

, (2.6)

which provides a measure of the variation of the ‘local area’ along a normal line relative to
the surface �. Evaluation of the dilation factor yields

Q = H‖K‖

HK
= 1 − 2cM + c2K, (2.7)

where

M = κ1 + κ2

2
, K = κ1κ2 (2.8)

are the mean and Gaußian curvatures respectively associated with the surface �. It is ap-
parent that c = 0 is a stationary point of the dilation factor if and only if M = 0, that is if
and only if � constitutes a minimal surface. Moreover, since K < 0 for (non-developable)
minimal surfaces, the following maximum principle is evident.

Theorem 1. A surface � is a minimal surface if and only if the corresponding dilation
factor Q(c) is stationary on � with respect to c. In this case, the dilation factor attains a
local maximum on �.

In conclusion, it is noted that the relation (2.7) delivers a simple geometric expression
for the mean curvature of a surface, namely

M = dA‖(−c) − dA‖(c)

4c dA
. (2.9)
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In fact, as shown in the next section, the latter may be used as a basis for the definition of
discrete mean curvature.

3. Parallel discrete surfaces and discrete mean curvature

In order to establish a maximum principle for discrete minimal surfaces, it is required to
introduce a notion of parallelism for discrete surfaces. Here, a discrete surface � is defined
as a two-dimensional lattice of Z2 combinatorics in a three-dimensional Euclidean space
or, on identification of a discrete surface with its position vector, a map

r : Z2 → R
3, (n1, n2) �→ r(n1, n2). (3.1)

Moreover, we assume that the quadrilaterals [r, r1, r12, r2] of any discrete surface may be
inscribed in circles. Here, subscripts indicate unit increments of the discrete variables so
that

r = r(n1, n2), r1 = r(n1 + 1, n2), r2 = r(n1, n2 + 1),

r12 = r(n1 + 1, n2 + 1). (3.2)

Discrete surfaces which obey the above ‘cyclicity’ condition have been recognized as canon-
ical discrete analogues of surfaces parametrized in terms of curvature coordinates (see [6]
and references therein) and are frequently referred to as ‘discrete curvature nets.’ However,
since we are concerned exclusively with discrete curvature nets, we simply refer to them as
discrete surfaces.

The cyclicity property now guarantees that the following definition is meaningful (cf.
Fig. 1).

Definition 1. A discrete surface r‖ : Z2 → R
3 is considered parallel and at a distance c to a

discrete surface r : Z2 → R
3 if the ‘vertical’ quadrilaterals [r, r1, r

‖
1, r

‖] and [r, r2, r
‖
2, r

‖]
constitute isosceles trapezoids of edge length c.

In the continuous case, any surface (locally) admits two parallel surfaces which are at
a distance c. In the discrete case, for any given c, there exists a two-parameter family of
parallel discrete surfaces. Indeed, if a single vertex r‖ is arbitrarily prescribed subject to
|r‖ − r| = c then the parallel discrete surface is uniquely determined by the condition of
vertical isosceles trapezoidal quadrilaterals. Even though this fact may be deduced directly

Fig. 1. The definition of parallel discrete surfaces.
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by geometric means, it is enlightening to make use of the discrete Gauß map introduced in
[17]. Thus, given a discrete surface � with position vector r and a point N(0, 0) on the unit
sphere S2, we may construct another two points N(1, 0) and N(0, 1) on S2 by demanding
that the line segments [N(0, 0), N(1, 0)] and [N(0, 0), N(0, 1)] be parallel to the edges
[r(0, 0), r(1, 0)] and [r(0, 0), r(0, 1)] respectively. A fourth point N(1, 1) is defined as the
point of intersection of the two lines which are parallel to the edges [r(1, 0), r(1, 1)] and
[r(0, 1), r(1, 1)] and pass through the points N(1, 0) and N(0, 1) respectively. The cyclicity
of the discrete surface � then guarantees that the fourth point also lies on S2 as illustrated
in Fig. 2. Accordingly, iterative application of this procedure generates another discrete
surface �◦ on the unit sphere which is uniquely determined by the choice of N(0, 0). The
discrete surface �◦ may be regarded as a ‘spherical representation’ of the discrete surface �

or a discrete analogue of the Gauß map [8] with N being a discrete ‘normal.’ Furthermore,
it is evident that any parallel discrete surface admits the representation

r‖ = r + cN. (3.3)

In this connection, it is convenient to regard c as a distance parameter which may also
be negative. It is also observed that for any discrete surface and an associated spherical
representation, any infinite sequence of distance parameters

· · · < c−2 < c−1 < c0 = 0 < c1 < c2 < · · · (3.4)

generates a lattice of Z3 combinatorics which has the property that all ‘horizontal’ and
‘vertical’ quadrilaterals may be inscribed in circles. The latter has been widely accepted
as a defining property for discrete orthogonal coordinate systems [4,6]. It is noted that, in
the continuous setting, the triple (x, y, c) indeed defines an orthogonal coordinate system
in R3.

The existence of discrete Gauß maps gives rise to the following natural definition (cf.
Fig. 2).

Fig. 2. A spherical representation of a discrete surface.
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Definition 2. The discrete Gaußian curvature of a discrete surface � with respect to an
associated spherical representation �◦ is defined by

K = δA◦
δA

, (3.5)

where δA and δA◦ denote the oriented areas of corresponding quadrilaterals of � and �◦
respectively.

As in the classical continuous case, the (local) discrete Gaußian curvature is taken to be
negative if the parallel quadrilaterals [r, r1, r12, r2] and [N, N1, N12, N2] are of opposite
orientation. This situation is illustrated in Fig. 3. In [17], it has been shown that discrete sur-
faces of constant Gaußian curvature are integrable in the sense that these admit a Bäcklund
transformation based on a Lax pair for the underlying difference equations. This fact is well
known in the classical continuous setting (see [14] and references therein).

In analogy with (2.9), the mean curvature of a discrete surface may now be given in terms
of the two parallel discrete surfaces which are at a distance ±c with respect to a spherical
representation (cf. Fig. 4).

Definition 3. The discrete mean curvature of a discrete surface � with respect to an asso-
ciated spherical representation �◦ is defined by

M = δA‖(−c) − δA‖(c)

4cδA
, (3.6)

where δA and δA‖(±c) denote the oriented areas of corresponding quadrilaterals of � and
�‖(±c) respectively with r‖(c) = r + cN.

In Section 4, it is demonstrated that the above geometric definition is independent of the
parameter c and coincides with the algebraic definition of the mean curvature proposed in
[17]. Accordingly, constant discrete mean curvature surfaces and discrete minimal surfaces
(M = 0) are likewise integrable. The geometric meaning of the conditionM = 0 is evident.
In this connection, it is observed that it is not difficult to show that the spherical representation
associated with any (generic) constant discrete mean curvature surface or discrete minimal
surface is unique. In fact, under the admissible and geometrically natural assumption that the
cross-ratio of the quadrilaterals is constant (cf. [3]), this particular spherical representation

Fig. 3. A cyclic quadrilateral and a spherical representation of opposite orientation.
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Fig. 4. The parallel discrete surfaces �, �‖(c) and �‖(−c) employed in the definition of the discrete mean curvature
M.

may be characterized in the following manner. In the case of discrete minimal surfaces, the
spherical representation is given by

N = (r1 − r1̄) × (r2 − r2̄)

|(r1 − r1̄) × (r2 − r2̄)| , (3.7)

where r1̄ = r(n1 − 1, n2) and r2̄ = r(n1, n2 − 1). This is in agreement with the discrete
Gauß map proposed in [3] on which the analogue of the classical Weierstrass representation
for discrete minimal surfaces is based. In the case of non-vanishing discrete mean curvature,
one may define, as in the continuous setting, the ‘centres of mean curvature spheres’ S by

S = r + 1

MN (3.8)

and show that these coincide with those algebraically obtained in [5].

4. A maximum principle for discrete minimal surfaces

We now demonstrate that, remarkably, the maximum principle stated in Theorem 1 is,
mutatis mutandis, also valid in the discrete setting. Here, in view of the formal continuum
limit, we assume that the quadrilaterals of a discrete surface are non-degenerate and embed-
ded, that is the edges of any quadrilateral do not intersect. Once again, we regard a discrete
surface � as being a member of a one-parameter family of parallel surfaces �‖(c) given by

r‖ = r + cN, (4.1)

where N constitutes any (but fixed) discrete Gauß map. Furthermore, the canonical discrete
analogue of the dilation factor Q(c) is defined by

Q = δA‖

δA
. (4.2)

In order to prove the maximum principle, we first introduce a suitable algebraic framework.
In particular, the algebraic expressions for the discrete Gaußian and mean curvatures pre-
sented in [17] are retrieved. As a by-product, a discrete analogue of a classical theorem for
linear Weingarten surfaces is obtained.
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Fig. 5. The ‘frame’ attached to an embedded quadrilateral.

4.1. Algebraic preliminaries: discrete linear Weingarten surfaces

The edge vectors of a discrete surface � with position vector r are naturally decomposed
into

r1 − r = HX, r2 − r = KY , (4.3)

where X and Y are unit ‘tangent’ vectors (cf. Fig. 5). Since the quadrilaterals are planar, the
tangent vectors X2 and Y1 may be expressed as linear combinations of the tangent vectors
X and Y . In the case of cyclic quadrilaterals, one obtains the relations [17]:

X2 = X + qY

�
, Y1 = Y + pX

�
, � =

√
1 − pq, (4.4)

where the quantities p and q are related to the oriented edge lengths H, K and H2, K1 by

H2 = H + pK

�
, K1 = K + qH

�
. (4.5)

Here, the orientation of the tangent vectors has been chosen in such a way that

X2 × Y + Y1 × X = 0. (4.6)

Moreover, the cyclicity of the quadrilaterals is encoded in the relation

X2 · Y + Y1 · X = 0, (4.7)

which confirms that opposite angles in an embedded cyclic quadrilateral add up to π. These
two relations imply that a quadrilateral is embedded and non-degenerate if and only if

HH2KK1 > 0. (4.8)

The latter property gives rise to the expression

|δA| = |H2K + K1H | |X × Y |
2�

(4.9)

for the area of an embedded cyclic quadrilateral.
By construction, the edges of a spherical representation �◦ are parallel to the corre-

sponding edges of a discrete surface �. Accordingly, the decomposition

N1 − N = H◦X, N2 − N = K◦Y (4.10)
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obtains, where the lattice functions H◦ and K◦ likewise obey the system (4.5), namely

H◦2 = H◦ + pK◦
�

, K◦1 = K◦ + qH◦
�

. (4.11)

The relation (4.9) combined with its analogue

|δA◦| = |H◦2K◦ + K◦1H◦| |X × Y |
2�

(4.12)

therefore delivers the algebraic expression

K = H◦2K◦ + K◦1H◦
H2K + K1H

(4.13)

for the discrete Gaußian curvature (3.5), wherein the sign reflects the correct relative orien-
tation of the quadrilaterals. It is observed in passing that this form of the discrete Gaußian
curvature may also be employed in the case of non-embedded quadrilaterals.

By virtue of (4.1), the ‘metric’ coefficients H‖ and K‖ of a parallel discrete surface �‖
are related to those of the discrete surface � and a corresponding spherical representation
�◦ by

H‖ = H + cH◦, K‖ = K + cK◦. (4.14)

On taking into account the relative orientation of the quadrilaterals, evaluation of the discrete
mean curvature (3.6) produces

M = −H2K◦ + K1H◦ + H◦2K + K◦1H

2(H2K + K1H)
, (4.15)

which is indeed independent of the distance c and coincides with the algebraic definition of
the discrete mean curvature proposed in [17]. It is noted that less symmetric forms of the
discrete mean curvature are given by

M = −H2K◦ + K1H◦
H2K + K1H

= −H◦2K + K◦1H

H2K + K1H
. (4.16)

The expressions (4.13) and (4.15) may readily be shown to deliver the relations

K‖ = K
1 − 2cM + c2K , M‖ = M − cK

1 − 2cM + c2K (4.17)

between the Gaußian and mean curvatures of a discrete surface and an associated parallel
discrete surface at distance c. Remarkably, these coincide with those known in classical dif-
ferential geometry [8]. Moreover, if the discrete surface � is of constant Gaußian curvature

K = ± 1

ρ2 , ρ = constant (4.18)

then there exists a linear relation between the discrete Gaußian and mean curvatures of the
parallel discrete surface �‖, namely

(c2 ∓ ρ2)K‖ + 2cM‖ + 1 = 0. (4.19)

The latter encodes a discrete analogue of a well-known theorem of classical differential
geometry [8].
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Theorem 2. Any discrete surface which is parallel to a discrete surface of constant Gaußian
curvature constitutes a discrete linear Weingarten surface.

By definition, Weingarten surfaces are surfaces for which the Gaußian and mean curva-
tures are functionally dependent. In the current situation, the functional dependence is linear.
Even though discrete linear Weingarten surfaces have been shown in [17] to be amenable to
the techniques of soliton theory, the above theorem implies that, as in the continuous case,
their integrability is inherited from discrete surfaces of constant Gaußian curvature. It is
noted that, in the case of positive constant Gaußian curvature, the above result encapsulates
a discrete analogue of a classical theorem due to Bonnet [8] in that the parallel discrete
surfaces �(±ρ) are of constant mean curvature ∓1/2ρ [3,17].

4.2. A maximum principle

Evaluation of (4.9) for a discrete surface and an associated parallel surface is readily
shown to lead to the following expression for the dilation factor Q.

Theorem 3. The dilation factor associated with a discrete surface � and a spherical
representation �◦ is given by

Q = 1 − 2cM + c2K, (4.20)

which is identical in form to the expression (2.7) valid in the continuous setting.

The maximum principle now reads as follows.

Corollary 1. A discrete surface � is a discrete minimal surface if and only if there exists a
spherical representation �◦ such that the corresponding dilation factor Q(c) is stationary
on � with respect to c. In this case, the dilation factor attains a local maximum on �.

Proof. It is required to show that K < 0 if M = 0, that is

H2K◦ + K1H◦ + H◦2K + K◦1H = 0. (4.21)

To this end, it is first observed that the above condition implies that

HH◦ = α(n1), KK◦ = −β(n2) (4.22)

with α, β �= 0 for non-degenerate spherical representations. These first integrals are par-
ticular cases of those obtained in the context of the integrable class of discrete O surfaces
discussed in [17]. However, their validity may be shown directly on use of the linear systems
(4.5) and (4.11). Elimination of H◦ and K◦ in (4.21) via (4.22) then leads to the relation

(βH2H − αK1K)(H2K1 + HK) = 0 (4.23)

so that

H2H

K1K
= α

β
> 0 (4.24)
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by virtue of the non-degeneracy and embeddedness assumptions. Finally, elimination of H◦
and K◦ from the expression (4.13) for the discrete Gaußian curvature indeed reveals that

K = − αβ

H2HK1K
< 0. � (4.25)

5. Connections: the ‘parallel surface method’

The representation (2.9) demonstrates that the mean curvature M of a surface � may
be obtained from � and two parallel surfaces �‖(±c) without (explicit) reference to the
Gauß map. Similarly, the Gaußian curvature K admits the ‘second-order central difference’
formulation

K = dA‖(c) − 2 dA + dA‖(−c)

2c2 dA
, (5.1)

which is also valid in the discrete setting if the symbol ‘d’ is formally replaced by ‘δ’. In
general, the dilation factor Q(c) as given by (2.7) allows one to reconstruct algebraically the
Gaußian and mean curvatures if the infinitesimal area elements of the surface � and two (or
more) parallel surfaces are known. This fact lies at the heart of the parallel surface method
which has been used to determine the (average) interfacial curvatures of ‘bicontinuous struc-
tures’ present in a variety of condensed materials (see [13] and references therein). Mea-
suring the curvatures of the interface formed, for instance, in binary mixtures of polymers
is essential since these determine the rate of the domain growth in the formation process.

The parallel surface method makes use of the surface areas A and A‖ of the interface �

and a sample of parallel surfaces �‖ respectively to obtain algebraically the surface averages

〈K〉 = 1

A

∫
K dA, 〈M〉 = 1

A

∫
M dA, A =

∫
dA (5.2)

of the Gaußian and mean curvatures via the dilation factor. In fact, the ‘integrated version’
of the relationship (2.7) reads

A‖

A
= 1 − 2c〈M〉 + c2〈K〉, (5.3)

which shows that an extremum principle may also be established for surfaces of vanishing
average mean curvature (〈M〉 = 0) with respect to the total surface area A‖(c). Thus, the
average mean curvature of a surface vanishes if and only if the apex of the parabola defined
by (5.3) is located at c = 0 provided that 〈K〉 �= 0. In [11], the existence of this parabolic
profile has been exploited in the context of the ‘spinodal decomposition’ into two phases
of a mixture consisting of polybutadiene (pb) and poly(styrene-ran-butadiene) (sbr).
Remarkably, by means of the parallel surface method, it has been concluded that the average
mean curvature of the spinodal interface is approximately zero with the apex of the parabola
indeed corresponding to a parallel surface which is very close to the spinodal interface.

In practice, due to the ‘digital’ nature of the 3D imaging processes involving, for in-
stance, laser scanning confocal microscopy [10] in the case of the condensed matter system
discussed above, the interface may not be reconstructed precisely but may only be approx-
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imated by a discrete surface. In the current context, the marching cubes algorithm [12] is
employed to obtain a triangulated interface and corresponding ‘normals’ which are defined
on the vertices of the discrete interface. As in the present paper, a parallel discrete surface
is then generated by translating the vertices along the normals by a fixed distance c and the
calculation of the average Gaußian and mean curvatures is based on the areas of parallel
discrete surfaces. Thus, it is evident that the practical determination of (average) interfacial
curvatures is essentially a ‘discrete’ problem with associated key concepts of ‘discrete nor-
mals’ and ‘discrete parallel surfaces.’ In this connection, it is observed that the relation (5.3)
is also valid in the current discrete setting, where the average Gaußian and mean curvatures
are canonically defined by

〈K〉 = 1

A

∑
KδA, 〈M〉 = 1

A

∑
MδA, A =

∑
δA. (5.4)
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